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INHOMOGENEOUS DISTRIBUTION OF THE

RADIOACTIVE HEAT SOURCES ™

I. Theory
by

Chi-yuen Wange

1. Introduction

The present data about heat flow over the surface of th» earth have
been analyzed by Wang (1963) and by Lee and MacDonald (1963). The
‘analyses were based mainly on data summarized by lee (1963).

Early in 1963 Mr. Joughin helped me to arrange the heat-flow data
on IBM cards and plot them on a glcbal map; I then averaged them o.er
10° x 10° squares and 20~ X 20° squares. The averaging processes tend
to bring down the amplitudes of the fluctuations indicated by indiviwual
data and to smooth out the values. The main results of the analyses are:
(1) for the 10° x 10° averages, there appears to be a strong correlation
between the heat-flow values and some major geological structures; for

example, very high heat-flow values (2.5 X lO-6 cal/cm2 sec or above)
tend to correlate with such areas as the western mountainous and platesu
regions of North America, the East Pacific Rise, the Mid-Atlantic Ridge,
and the island arc of the western Pacific Ocean and some <*her volcanic
areas; (2) for the 20° X 20° averages, there appear to be certain cor-
relations between the highs and lows of the heat flow and the negative
and positive geoid heights represented by the low-order spherical har-
monics as obtained from satellite data (Izsak, 1963a); the coefficient

of correlation was 0.5.

The implication of the second result is that under the depressed
geoid the material may be hotter and lighter, one being related to the
other, and, contrarily, under the elevated geoid the material may be
cooler and heavier. T explained, qualitatively and tentatively, the
correlated phenomena by the convection-current hypothesis, by which the
ascending currents of lighter and hotter material bring up heat to the
top of the mantle, and higher surface heat flow appears over the
ascending currents while the gravity is lower than its surroundings.

lThis work was supported in part by grant NsG 87-60 from the
National Aeronautics and Space Administration.

2Physicist, Smithsonian Astrophysical Observatory.
wle



Lee and MacDonald (1963) used a larger amount of data (757 values)
and represented the heat flow by contours. In dealing with the very
unevenly distributed data, they employed functions which are orthogonal
to the station net. Furthermore, they obtained the spherical harmonic
coefficients, corresponding to the various representations, up to order
2. They also noticed a rough correlation between the heat-flow field
and the gravitational field and suggested that comvection current
hypothesis may explain the phenomenon.

These observed surface thermal and gravitational phenomena do not,
of course, necessarily indicate motions in the mantle; inhomogeneity
in the physical properties of the upper mantle or in the material of
the mantle itself may also be the possible cause for the correlation
between the two sets of geophysical data. In this paper I assume that
the inhomogeneous distribution of the heat sources in the interior is
responsible, through thermal conduction, for the fluctuations of the
surface heat flow. The interior temperature so related is assumed to
cause uneven thermal expansion and to produce density anomaly, which
in turn causes the gravity anomaly observed on the surface of the earth.
The purpose of this paper is to form a theory to test whether
the above assumptions are sound . Numerical results will be given
in a later publication.

2. New correlation coefficients

The present correlation is based on two sources of data: (1) Izsak's
gravitational potential from satellite orbits (1963b) and (2) Lee and
MacDonald's heat-flow analysis (1963). The coefficients in the spherical
harmonic expansion of the heat-flow analysis are listed in table 1. The
expansion 1s expressed as

2 4

F(9,9) = E, 2» (fgmcos me + 5&msin me) PE (cos ©) .
£4=0 m=0

Since the above harmonic expansion is only up to the second order,
I choose, for the purpose of correlation, only the second-order tesseral
harmonics. The geoid height according to the conventional coefficients

C, 5=T-56 X 1077 and 5. . =-6.15 X 1077 is plotted in figure 1.

,2 2,2

Furthermore, to get a clearer view of the correlation, we are more
interested in the variations in the heat-flow distribution than in the
values of heat flow themselves. The main spherical term fo(}s therefore

24

taken out and in figures 2, 3,and 4 the fluctuations of heat flow with
respect to the references fqpare plotted according to the coefficients
listed in table 1. The correlation coefficients between figure 1 and

figures 2, 3,and U4 are, respectively, -0.77, -0.70, -0.82.

o




Coefficients in Spherical Harmonic Expansion in peal/cm2sec

Table 1

(from Lee and MacDonald, 1963)

5° x 5° weighted
averages

1.529
0.039
0.059
0.057
-0.036
-0.075
0.032
0.085

0.038

45° x 45° weighted
averages

1.509
0.152
0.072

-0.062
0.042
0.029
0.100
0.113

0.052

Extreme values
deleted (611 values)

1.k02

0.025

-0.006

0.058

-0 5033

-0.052

0.032

0.048

0.039
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The large negative values of the linear correlation coefficient
imply a close relation between the density perturbations and the
temperature variations in the interior of the earth. The temperature
variations may result from inhomogeneous distribution of radiocactive
sources in the interior; this will be discussed in the next section.

In a recent communication Dr. John A. O'Keefe pointed out that
the nonhydrostatic components in the geopotential should be referred
to the hydrostatic ellipsoid (f = 1/299.8) instead of to the best-
fitting ellipsoid. However, geoid height plotted on the hydrostatic
ellipsoid shows no correlation to the heat-flow distribution. T am
tempted to think that the nonhydrostatic part of the second-order
zonal harmonic in the geopotential, which is much larger than the
other nonhydrostatic components, is mainly the result of some mechanism
other than the temperature variations in the earth's interior.

3. Temperature resulting from inhomogeneous distribution of the radio-
active heat sources

In this section I shall draw some models for the distribution of
the radioactive heat sources in the interior that would give the fluc-
tuations of surface heat flow through thermal conduction. Our present
knowledge about the earth's interior is extremely limited. It is
therefore necessary, for the time being, to treat the interior with
some much-simplified models. 1In the present treatment, I have assumed
that the thermal conductivitity K, the thermal diffusivity k, and the
thermal expansion coefficient o are constants throughout the interior.

The temperature Tm resulting from a distribution of heat sources
generating heat at a rate A per unit volume is controlled by the con-

duction equation

2 ) _k ., _

kv Tm-EE-Tm—EA—-Wm, (1)
where ¢m is the source density function. Owing to the radioactive decay
of the heat sources, ¢m should be a decreasing function of time, but as
uranium, thorium and potassium all have very long half-lives (between

0.7~ L4 x lO9 years), the decrease in Wm is very slow and may be neglected
here.




To transfer the above equation into dimensionless form, assume

T; = characteristic temperature

t° = " time

r° = " length

© = " source density,

m

and assume
e} o o 0
= = ¥ = _
Tm TmT*, t =t t¥ r =rr* and *m = wmwg .

T oT*
k 0\ *2 m) 1m0 o
( o2 Tm)V T:; ) (to) av* ‘km ‘km
r

aT*
*2 m
or v T;-GS%—-—B*;}
r02
where a = —
kt
r02%0]
cnd B = ) .
kT
m

If o =1 and B =1, the above equations give

rC =Wkt°
and

o _ 0,0

L —Tm/t ,

(2)

@

(&)
(5)




and we arrive at the dimensionless differential equation

a
*x2 ¥ m _ %
\v4 Tm - 'a'? = 'i’m . (6)

The heat flow per unlt area at the earth's surface, F m’ is given
by Karm/ar. It F —'F F 0’ where F is the characteristic heat flow

per unit area, we have

fe) ¥*
T \or
F=FF =k 2|2
m m I‘O ar % *
r = a
or
*
* T; aTm
e P T : (1)
F | or
r * *
r =a
It K.To/roFO =1, we have
m m
O=OO
T rFm/K. (8)

Since we are not interested in the spherically symmetric distri-
bution of elther the temperature, T s? the source density, WS, or the

heat flow, F » but are rather 1nterested in the deviations from their

spherical terms, let us set

¥* *
T =T + T
m S
¥* *
Fm—FS+F b (9)
* * *
=+
m S

* _* ¥
where T , F, ¥ are the deviations of temperature, heat flow, and
source density from their spherical distributions. 1In view of the
linearity of (6) we have finally

*¥2 % Jr _ ¥
—x =V (10)




It is a reasonable assumption that the present temperature fluc-
tuation, T, in the interior is controlled by a pattern of distribution
of the radiocactive elements, fixed since the crust and the mantle were
consolidated. Assuming the age of the oldest rock (3.5 billion years)
to be the age of the crust and the upper mantle, we can set t =0 as
the time at 3.5 billion years ago. At t = O, when the pattern of dis-
tribution of the radiocactive elements was just fixed, the fluctuation
of temperature caused by this distribution is nil. The boundsary con-
dition of this problem is that T¥ = 0 at the surface of the spherical
earth, r =a, and T*¥ is bounded at the center of the earth, r = O.

Using the method of the Laplace transform defined as

@

F(0) =f £(x) e "™ ax |
0]

equation (10) becomes

vV T -AT =1VX— ’ (11)

with boundary conditions

* *
T is bounded at r = 0. We have, from the differential equation (11),

fffc;(i’,?', (X) Sx (12)

where G is the Green's function satisfying

UG- =- 8(xx") (13)

and the same boundary condition. é(x-x') is the Dirac delta function.
Assuming that ¢£ _— is the eigenfunction of the differential equation
2%

v2CP+>\CP=O’

with the same boundsry condition, corresponding to the eigenvalue AZ X
PR %4
then G may be expressed as the bilinear expansion

“1L-



CPbm:k (2) cpl::m)k (5c> I) . (k)

M

a(X,% ;1) =

A+
L,m,k=o z’k
Hence
[} b ® (_)
e g,mk "g,mk (%)
4,myk=0 ?
where
- .
Pg,mx = S&% P4,m,% ) e (@) Ok . (16)
v :
Thus
Vile - = b ¢ >
Fetw) = L et Lomk  “gymk (X)
m) gy | e > HE e . e
v ie £,m,k=0 2
Since A is a sequence of real, positive numbers, the integral

2,k

has simple poles at A =0 and A = -Xz "
J

cular arc on the complex-A plane, centering at the origin and lying to

the left of the line of integration, tends to zero as the radius of
the arc tends to infinity. Cauchy's theorem gives

The integral along the cir-

A

= D, e @ me B D, 9, (D) At
T*(;)C;‘b) = - Z !’)m’]; 4,mk L Lmk "4,mk e 4,k (18)
Lk L,k

L’m,k=o

or, replacing bl m. k by the integral expression, we have
252

-A

t
-» z,k
T*(x,1) =_SSS Z ®,m,k (%) ®g,m,k (x) (L-i-i—;—k—_)w* X S&x . (19)

~12-




In the spherical coordinates, the eigenfunction CPI, ok 85 is
25

well known, is

s * ) cos
N(£,m,k) J, z Kk ¥ Pz (cos ) o? , (20)

where N(4,m,k) is the normalizing factor and AL x 18 the k-th root of

the 4-th order spherical Bessel function of the first kind: J 2 defined
as

FORNAIE RO

The eigenfunction is bounded at r* =0 and is single-valued for every
point in space. We may then write T* as

-)\E kt
* r* cos m® [ 1= ?
(", 8,9,8) = E ¥(4,m,k) Jz( £,k *) ) (cos &) 00 00 eX,L
4,m, k=0 ox

sfoilten
v

/
*, *
cos m * ( 4 el

4 -x-/2 el *'e, ’
sin mcp' )CP )I‘ sin. 9" ar 4 ae s

where .
2(24+ 1)(4-m)! 2
e 3( 4+ m)! jf()\z,k)

N(4,m,k) = (22)

*, %, ./,
Formally, we can express ¥ (r ,0°,9") in the following expansion

@

* s d cos viP'
X, ¥, 01 4 r v 7 U, v,w
. 6 = }\ ——— B Y
Vir 8% e : Iy (u,w 7| Py (cos ){e sin ve'’

a U, V,w
u,v,w=0 i

(23)

-13-



*
we have, after replacing this in the expression of T (21) and integrating

= *

*, * * . r m

T (r,9% %t ) =- E 3, <)\£,k 7>PL (cos 9)
L,m,k=0 a

l-e—)\z’kt
X : . .
(dz,m,k cos m¥ + eﬁ,m,k sin m®) —_—x_jz—_— (2k)

)

Now
*
* _ oo
r =a ,
=fo) »
* E ) m
F (e,(p;%(—) = - Jz’ (xﬁ,k) Pz (COS e)
£,m, k=0
*
-A
x (a ¢ + in m9) + =S — il (26)
cos m e sin m . .
Lym,k Lym,k £,k

*
For a certain time t = £° = 3.5 billion years, i.e., t =1, we have

-A
o«© z,k

* . 1l
F (8,91) = - g (g ) [F—
b I/,k
m, k=0

2

m .
. P, (cos e)(dl,m,k cos mP +e, sin m®) . (27)

sM, kK

. Now, from the analysis of the surface heat-flow distribution,
F (e,w;ls may be expressed in the expansion of spherical harmonics,
that is,

@

- E Pﬁ (cos 9) (f’fel,m cos mP + g}}m sin m®). (28)
4,m=0

F (5, 9;1)

=1h-




By comparing the corresponding coefficients in the above two expressions
for F*, we arrive at

o -A
o* :__2 (N, 1. bE a (29)
I e P \ TR Yme ?

k=0 ’

and .
* ’ 1-e-)\z’k

e = -Z Jp (Ag) v N €y mk (30)

2

From the above two equations we see that for a given f 0 and g, n’
b4

the solutions for the corresponding dz m.k and e, are not uniquely
b Ak}

,m,k
determined. This situation is what can be expected from our physical
intuition that for a given surface heat flow resulting from heat sources
under the surface, there are infinite ways that the corresponding heat
sources may distribute. We have, therefore, to impose & stricter
assumption on the problem before we can get an answer. For example,

we could assume that the source den31ty ¥* is not a function of r*, or

that it is directly proportional to r or to r*2, etc. Since we are
dealing only with the departures of the distribution of the heat sources
from the main spherical term, these considerations may not be far from
reasonable.

*
Model I. ¥ is a function independent of r.

Set
(1) (1) m
2; EJ p)e’,m cos mP + qz’m sin m®| P, (cos ©) . (31)
£=0 m=0

*
Since V can also be expanded in the form of (24), by comparing equations
(24) and (31), we have

_ (1)
jz: dz,m,k ) (XL k a*) Pgom  ? (32)
k=0
and
= o)
> epox 4 Opxm)- o - (33)
k=0

-15-



The functions jz(lx) are solutions for the following differential

equation in the Stumm-Liouville form

(237" + %P - 4(441)]5 = 0

and have roots A, | Such that jz(lz k) = 0; hence they form an ortho-
2 2
gonal set of functions on the interval O < x < 1, with respect to the

*
weight function p(x) = 2. If x = r*/a , (32) and (33) then give

zpil) 1 ,
a - ,m fx 5, (A, x) ax (34)
(1) 1
qu m (g 2
e = - 2 X ()\ X) dx . (35)
Z,m,k [jz ()\L,k) ]2 A £ l/,k

Substituting (34) and (35) into (29) and (30), respectively, we get

f (1) Y
L,m 2P£’m © (]_ e L’k)
£,m L,m k=0 SPAMY RN
1
2,
[P 00 e | (36)
0

=16-




Pz,m and qz’m are then given by
(1) &
pjf’m L,m - _)\L
_ . 2(1-e Ky
i 00, )
(2) o k=0 & I\ x
9,m 4,m
1 -1
2.
X j X Jl(Kz,kx)dx . (37)
0

The temperature resulting from this distribution of heat sources is given
by (24), in which dy i ond e, | are given by (34) anda (35).
P A |

P Band
In general, let us write
©
* * m 6 .
Vo= E z R(r") P, (cos )(Pz,m cos mP +4q,  sin m®) , (38)

£=0 m=0

* *
where R(r ) is any function of r . Following the same procedure as for
Model I, we have

pf;,m f’z,m
® -A
- E 2(1-e z’k)
*
k=0 & Jglhg )
q & ’
Lym Lym
1 -1
*y 2
xf RGN 25,0, Hax| (39)
0

-17-



and

d‘Jﬁ,m,k pl,m
1
IR 0

€4,m,k

Equations (39) and (40) can be solved either analytically or numerically,
depending upon the character of the function R(r"). Some simple models
are proposed as follows:

Model II. R(r*) = &(r¥) |,

where é(r*) = 1 within a certain spherical layer in the earth, but is
equal to zero elsevhere.

*
Model III. R(r ) =x.

*
Model V. R(r ) =x°.

For all the above models, analytical solutions are found for
equations (39) and (40). Numerical results, to be given in a later

paper, would indicate which one of these models is most realistic,
or how a more realistic model can be proposed.

4, Surface-density anomaly and geoid height

If we write a surface-density anomaly O to represent the accumulation
of the density anomaly resulting from the uneven thermal expansion, we
have

1
c=_fandx, (k1)
0

where @ is the coefficient of volume thermal expansion.

This surface-density anomaly, expressed in the expansion of spherical
harmonics, can also be written as

©
=\ m
G =- }_ }_ (24+41) (Cz,m cos m® +'S£,m sin m®) P, (cos @) . (42)
4=0 m=0

By comparing (2), (24), (41), and (k2), cy p Bnd sy . are solved in
. > J
terms of dl,m,k and ez,m,k’

-18-




©4,m ©° ,m,k Ay}
_ 0 m 1l-e ? .
"5 L o f % Jghy ) ax . (43)
. k0 ’ 0
L,m L4,m,k

The external potential resulting from the surface-density anomaly
expressed in (42) is (Jeffreys, 1959)

© 4
A+1
u=trac’ ) ) (3] (c,, cosm®+s, sinme) P} (cos ©), (W)
4

)
=0 m=0

where G’ is the gravitational constant. The geoid height corresponding
to the above external potential is (Jeffreys, 1959)

£
hﬂ33
M

~1 8

g.h. = E' (cl,m cos mP + Sgm sin m®) Pi (cos ) , (45)

£=0 m=0

where M is the mass of the earth. Or,

y
o= +
g.h. E. (c)@,m cos mP + s,

sin m®) Pi (cos ©) , (46)
=0 m=0 ’

oI |W
| ™~ 8

where P is the meean density of the earth. If the geoid height so com-
puted has the same order of magnitude as that in figure 1, then the
assumption that the second-order variation in the gravitational field
results from inhomogeneous distribution of radiocactive elements in the
interior is good.
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